NAG Fortran Library Routine Document

E02DEF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

E02DEF calculates values of a bicubic spline from its B-spline representation.

2 Specification

```
SUBROUTINE E02DEF(M, PX, PY, X, Y, LAMDA, MU, C, FF, WRK, IWRK, IFAIL)INTEGERM, PX, PY, IWRK(PY-4), IFAILrealX(M), Y(M), LAMDA(PX), MU(PY), C((PX-4)*(PY-4)),1FF(M), WRK(PY-4)
```

3 Description

This routine calculates values of the bicubic spline s(x, y) at prescribed points (x_r, y_r) , for r = 1, 2, ..., m, from its augmented knot sets $\{\lambda\}$ and $\{\mu\}$ and from the coefficients c_{ij} , for i = 1, 2, ..., PX - 4; j = 1, 2, ..., PY - 4, in its B-spline representation

$$s(x,y) = \sum_{ij} c_{ij} M_i(x) N_j(y).$$

Here $M_i(x)$ and $N_j(y)$ denote normalised cubic B-splines, the former defined on the knots λ_i to λ_{i+4} and the latter on the knots μ_i to μ_{i+4} .

This routine may be used to calculate values of a bicubic spline given in the form produced by E01DAF, E02DAF, E02DAF, E02DDF. It is derived from the routine B2VRE in Anthony *et al.* (1982).

4 References

Anthony G T, Cox M G and Hayes J G (1982) *DASL – Data Approximation Subroutine Library* National Physical Laboratory

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation *J. Inst. Math. Appl.* **21** 135–143

5 Parameters

1: M - INTEGER

On entry: m, the number of points at which values of the spline are required.

Constraint: $M \ge 1$.

2: PX – INTEGER

3: PY – INTEGER

On entry: PX and PY must specify the total number of knots associated with the variables x and y respectively. They are such that PX - 8 and PY - 8 are the corresponding numbers of interior knots.

Constraint: $PX \ge 8$ and $PY \ge 8$.

Input

Input

Input

4: X(M) - real array

Y(M) - real array 5:

> On entry: X and Y must contain x_r and y_r , for r = 1, 2, ..., m, respectively. These are the coordinates of the points at which values of the spline are required. The order of the points is immaterial.

Constraint: X and Y must satisfy

$$LAMDA(4) \le X(r) \le LAMDA(PX - 3)$$

and

$$MU(4) \le Y(r) \le MU(PY - 3), \quad r = 1, 2, ..., m.$$

The spline representation is not valid outside these intervals..

LAMDA(PX) - real array 6:

7: MU(PY) – *real* array

> On entry: LAMDA and MU must contain the complete sets of knots $\{\lambda\}$ and $\{\mu\}$ associated with the x and y variables respectively.

> *Constraint*: the knots in each set must be in non-decreasing order, with LAMDA(PX - 3) > LAMDA(4) and MU(PY - 3) > MU(4).

C((PX-4)*(PY-4)) - real array8:

> On entry: $C((PY-4) \times (i-1) + j)$ must contain the coefficient c_{ij} described in Section 3, for $i = 1, 2, \dots, PX - 4; j = 1, 2, \dots, PY - 4.$

FF(M) - *real* array 9:

On exit: FF(r) contains the value of the spline at the point (x_r, y_r) , for r = 1, 2, ..., m.

- WRK(PY-4) real array 10:
- IWRK(PY-4) INTEGER array 11:
- 12: IFAIL – INTEGER

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 **Error Indicators and Warnings**

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, M < 1, or PY < 8, PX < 8.or

[NP3546/20A]

Workspace Input/Output

Workspace

Input

Input

Input

Output

Input

Input

IFAIL = 2

On entry, the knots in array LAMDA, or those in array MU, are not in non-decreasing order, or LAMDA(PX - 3) \leq LAMDA(4), or MU(PY - 3) \leq MU(4).

IFAIL = 3

On entry, at least one of the prescribed points (x_r, y_r) lies outside the rectangle defined by LAMDA(4), LAMDA(PX - 3) and MU(4), MU(PY - 3).

7 Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value of $s(x_r, y_r)$ can be regarded as the value that would have been obtained in exact arithmetic from slightly perturbed B-spline coefficients. See Cox (1978) for details.

8 Further Comments

Computation time is approximately proportional to the number of points, m, at which the evaluation is required.

9 Example

This program reads in knot sets LAMDA(1),..., LAMDA(PX) and MU(1),..., MU(PY), and a set of bicubic spline coefficients c_{ij} . Following these are a value for m and the co-ordinates (x_r, y_r) , for r = 1, 2, ..., m, at which the spline is to be evaluated.

9.1 Program Text

Note: the listing of the example program presented below uses *bold italicised* terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
E02DEF Example Program Text
*
*
     Mark 14 Release. NAG Copyright 1989.
      .. Parameters ..
*
      INTEGER
                       NIN, NOUT
                       (NIN=5,NOUT=6)
     PARAMETER
     INTEGER
                       MMAX, PXMAX, PYMAX
     PARAMETER
                       (MMAX=20, PXMAX=MMAX, PYMAX=PXMAX)
      .. Local Scalars ..
     INTEGER
                       I, IFAIL, M, PX, PY
*
      .. Local Arrays ..
     real
                       C((PXMAX-4)*(PYMAX-4)), FF(MMAX), LAMDA(PXMAX),
     +
                       MU(PYMAX), WRK(PYMAX-7), X(MMAX), Y(MMAX)
     INTEGER
                       IWRK(PYMAX-7)
      .. External Subroutines ..
*
     EXTERNAL
                       E02DEF
      .. Executable Statements ..
     WRITE (NOUT, *) 'E02DEF Example Program Results'
*
     Skip heading in data file
     READ (NIN, *)
     Read PX and PY, the number of knots in the X and Y directions.
*
     READ (NIN,*) PX, PY
      IF (PX.LE.PXMAX .AND. PY.LE.PYMAX) THEN
         Read the knots LAMDA(1) .. LAMDA(PX) and MU(1) .. MU(PY).
         READ (NIN,*) (LAMDA(I),I=1,PX)
         READ (NIN,*) (MU(I),I=1,PY)
         Read C, the bicubic spline coefficients.
         READ (NIN, *) (C(I), I=1, (PX-4) * (PY-4))
*
         Read M, the number of spline evaluation points.
         READ (NIN,*) M
         IF (M.LE.MMAX) THEN
            Read the X and Y co-ordinates of the evaluation points.
            DO 20 I = 1, M
```

```
READ (NIN,*) X(I), Y(I)
   20
           CONTINUE
            IFAIL = 0
*
            Evaluate the spline at the M points.
*
            CALL E02DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
*
*
            Print the results.
            WRITE (NOUT, *)
            WRITE (NOUT, *) '
                                  Ι
                                          X(I)
                                                      Y(I)
                                                                FF(I)'
            WRITE (NOUT, 99999) (I,X(I),Y(I),FF(I),I=1,M)
         END IF
     END IF
     STOP
99999 FORMAT (1X,17,3F11.3)
     END
```

9.2 Program Data

E02DEF Example Program Data 11 10 PX PY 1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0 LAMDA(1) .. LAMDA(PX)

 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0

 0.0
 0.0
 0.0
 0.4
 0.7
 1.0
 1.0
 1.0

 1.0000
 1.1333
 1.3667
 1.7000
 1.9000
 2.000

 1.2000
 1.3333
 1.5667
 1.9000
 2.1000
 2.200

 MU(1) .. MU(PY) 2.0000 2.2000 1.5833 1.7167 1.9500 2.2833 2.4833 2.5833 -.2/67 -.0067 3.0000 3.4667 3.605 4.0005 3.1433 2.1433 2.2767 2.5100 2.8433 3.0433 3.0000 3.2333 3.6000 3.8333 3.5667 3.7667 4.1667 4.3667 3.8667 4.4667 4.0000 4.1333 4.3667 4.7000 4.9000 5.0000 Spline coefficients, C 7 М 1.0 0.0 1.1 0.1 X(1), Y(1)1.5 0.7 1.6 0.4 1.9 0.3 1.9 0.8 2.0 1.0 X(M), Y(M)

9.3 Program Results

E02DEF Example Program Results

I	X(I)	Y(I)	FF(I)
1	1.000	0.000	1.000
2	1.100	0.100	1.310
3	1.500	0.700	2.950
4	1.600	0.400	2.960
5	1.900	0.300	3.910
6	1.900	0.800	4.410
7	2.000	1.000	5.000